Lecture 18 # Hollow Waveguides Hollow waveguides are useful for high-power microwaves. Air has a higher breakdown voltage compared to most materials, and hence, could be a good medium for propagating high power microwave. Also, hollow waveguides are sufficiently shielded from the rest of the world so that interference from other sources is minimized. Furthermore, for radio astronomy, they can provide a low-noise system immune to interference. Air generally has less loss than materials, and loss is often the source of thermal noise. A low loss waveguide is also a low noise waveguide.¹ Many waveguide problems can be solved in closed form. An example is the coaxial waveguide previously discussed. But there are many other waveguide problems that have closed form solutions. Closed form solutions to Laplace and Helmholtz equations are obtained by the separation of variables method. The separation of variables method works only for separable coordinate systems. (There are 11 separable coordinates for Helmholtz equations, but 13 for Laplace equation.) Some examples of separable coordinate systems are cartesian, cylindrical, and spherical coordinates. But these three coordinates are about all we need to know for solving many engineering problems. More complicated cases are now handled with numerical methods using computers. When a waveguide has a center conductor or two conductors like a coaxial cable, it can support a TEM wave where both the electric field and the magnetic field are orthogonal to the direction of propagation. The uniform plane wave is an example of a TEM wave, for instance. However, when the waveguide is hollow or is filled completely with a homogeneous medium, without a center conductor, it cannot support a TEM mode as we shall prove next. Much of the materials of this lecture can be found in [31,75,84]. ¹There is a fluctuation dissipation theorem [103, 104] that says that when a system loses energy to the environment, it also receives the same amount of energy from the environment in order to conserve energy. Hence, a lossy system loses energy to its environment, but it receives energy back from the environment in terms of thermal noise. ## 18.1 Hollow Waveguides #### 18.1.1 Absence of TEM Mode in a Hollow Waveguide Figure 18.1: Absence of TEM mode in a hollow waveguide enclosed by a PEC wall. The magnetic field lines form a closed loop due to the absence of magnetic charges. We would like to prove by contradiction (reductio ad absurdum) that a hollow waveguide as shown in Figure 18.1 (i.e. without a center conductor) cannot support a TEM mode as follows. If we assume that TEM mode does exist, then the magnetic field has to end on itself due to the absence of magnetic charges. It is clear that $\oint_C \mathbf{H}_s \cdot d\mathbf{l} \neq 0$ about any closed contour following the magnetic field lines. But Ampere's law states that the above is equal to $$\oint_C \mathbf{H}_s \cdot d\mathbf{l} = j\omega \int_S \mathbf{D} \cdot d\mathbf{S} + \int_S \mathbf{J} \cdot d\mathbf{S}$$ (18.1.1) Hence, this equation cannot be satisfied unless there are $E_z \neq 0$ component, or that $J_z \neq 0$ inside the waveguide. The right-hand side of the above cannot be entirely zero, or this implies that $E_z \neq 0$ unless a center conductor carrying a current **J** is there. This implies that a TEM mode in a hollow waveguide without a center conductor cannot exist. Therefore, in a hollow waveguide filled with homogeneous medium, only TE_z or TM_z modes can exist like the case of a layered medium. For a TE_z wave (or TE wave), $E_z=0$, $H_z\neq 0$ while for a TM_z wave (or TM wave), $H_z=0$, $E_z\neq 0$. These classes of problems can be decomposed into two scalar problems like the layerd medium case, by using the pilot potential method. However, when the hollow waveguide is filled with a center conductor, the TEM mode can exist in addition to TE and TM modes. We will also study some closed form solutions to hollow waveguides, such as the rectangular waveguides. These closed form solutions offer us physical insight into the propagation of waves in a hollow waveguide. Another waveguide where closed form solutions can be obtained is the circular hollow waveguide. The solutions need to be sought in terms of Bessel functions. Another waveguide with closed form solutions is the elliptical waveguide. However, the solutions are too complicated to be considered. Hollow Waveguides 173 # 18.1.2 TE Case $(E_z = 0, H_z \neq 0)$ In this case, the field inside the waveguide is TE to z or TE_z . To ensure a TE field, we can write the **E** field as $$\mathbf{E}(\mathbf{r}) = \nabla \times \hat{z}\Psi_h(\mathbf{r}) \tag{18.1.2}$$ Equation (18.1.2) will guarantee that $E_z=0$ due to its construction. Here, $\Psi_h(\mathbf{r})$ is a scalar potential and \hat{z} is called the pilot vector.² The waveguide is assumed source free and filled with a lossless, homogeneous material. Eq. (18.1.2) also satisfies the source-free condition since $\nabla \cdot \mathbf{E} = 0$. And hence, from Maxwell's equations, it can be shown that the electric field $\mathbf{E}(\mathbf{r})$ satisfies the following Helmholtz wave equation, or partial differential equation that $$(\nabla^2 + \beta^2)\mathbf{E}(\mathbf{r}) = 0 \tag{18.1.3}$$ where $\beta^2 = \omega^2 \mu \varepsilon$. Substituting (18.1.2) into (18.1.3), we get $$(\nabla^2 + \beta^2)\nabla \times \hat{z}\Psi_h(\mathbf{r}) = 0 \tag{18.1.4}$$ In the above, we assume that $\nabla^2 \nabla \times \hat{z} \Psi = \nabla \times \hat{z} (\nabla^2 \Psi)$, or that these operators commute.³ Then it follows that $$\nabla \times \hat{z}(\nabla^2 + \beta^2)\Psi_h(\mathbf{r}) = 0 \tag{18.1.5}$$ Thus, if $\Psi_h(\mathbf{r})$ satisfies the following Helmholtz wave equation of partial differential equation $$(\nabla^2 + \beta^2)\Psi_h(\mathbf{r}) = 0 \tag{18.1.6}$$ then (18.1.5) is satisfied, and so is (18.1.3). Hence, the **E** field constructed with (18.1.2) satisfies Maxwell's equations, if $\Psi_h(\mathbf{r})$ satisfies (18.1.6). $^{^{2}}$ It "pilots" the field so that it is transverse to z. ³This is a mathematical parlance, and a commutator is defined to be [A, B] = AB - BA for two operators A and B. If these two operators commute, then [A, B] = 0. Figure 18.2: A hollow metallic waveguide with a center conductor (left), and without a center conductor (right). Next, we look at the boundary condition for $\Psi_h(\mathbf{r})$ which is derivable from the boundary condition for \mathbf{E} . The boundary condition for \mathbf{E} is that $\hat{n} \times \mathbf{E} = 0$ on C, the PEC wall of the waveguide. But from (18.1.2), using the back-of-the-cab (BOTC) formula, $$\hat{n} \times \mathbf{E} = \hat{n} \times (\nabla \times \hat{z} \Psi_h) = -\hat{n} \cdot \nabla \Psi_h = 0 \tag{18.1.7}$$ In applying the BOTC formula, one has to be mindful that ∇ operates on a function to its right, and the function Ψ_h should be placed to the right of the ∇ operator. In the above $\hat{n} \cdot \nabla = \hat{n} \cdot \nabla_s$ where $\nabla_s = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y}$ since \hat{n} has no z component. The boundary condition (18.1.7) then becomes $$\hat{n} \cdot \nabla_s \Psi_h = \partial_n \Psi_h = 0 \text{ on } C \tag{18.1.8}$$ which is also known as the homogeneous Neumann boundary condition. Furthermore, in a waveguide, just as in a transmission line case, we are looking for traveling solutions of the form $\exp(\pm j\beta_z z)$ for (18.1.6), or that $$\Psi_h(\mathbf{r}) = \Psi_{hs}(\mathbf{r}_s)e^{\mp j\beta_z^z} \tag{18.1.9}$$ where $\mathbf{r}_s = \hat{x}x + \hat{y}y$, or in short, $\Psi_{hs}(\mathbf{r}_s) = \Psi_{hs}(x,y)$. Thus, $\partial_n \Psi_h = 0$ implies that $\partial_n \Psi_{hs} = 0$. With this assumption, $\frac{\partial^2}{\partial z^2} \to -\beta_z^2$, and (18.1.6) becomes even simpler, namely, $$(\nabla_s^2 + \beta^2 - \beta_z^2)\Psi_{hs}(\mathbf{r}_s) = (\nabla_s^2 + \beta_s^2)\Psi_{hs}(\mathbf{r}_s) = 0$$, $\partial_n \Psi_{hs}(\mathbf{r}_s) = 0$, on C (18.1.10) where $\beta_s^2 = \beta^2 - \beta_z^2$. The above is a boundary value problem for a 2D waveguide problem. The above 2D wave equation is also called the reduced wave equation. Hollow Waveguides 175 #### 18.1.3 TM Case $(E_z \neq 0, H_z = 0)$ Repeating similar treatment for TM waves, the TM magnetic field is then $$\mathbf{H} = \nabla \times \hat{z}\Psi_e(\mathbf{r}) \tag{18.1.11}$$ where $$(\nabla^2 + \beta^2)\Psi_e(\mathbf{r}) = 0 \tag{18.1.12}$$ We need to derive the boundary condition for $\Psi_e(\mathbf{r})$ when we know that $\hat{n} \times \mathbf{E} = 0$ on the waveguide wall. To this end, we find the corresponding \mathbf{E} field by taking the curl of the magnetic field in (18.1.11), and thus the \mathbf{E} field is proportional to $$\mathbf{E} \sim \nabla \times \nabla \times \hat{z} \Psi_e(\mathbf{r}) = \nabla \nabla \cdot (\hat{z} \Psi_e) - \nabla^2 \hat{z} \Psi_e = \nabla \frac{\partial}{\partial z} \Psi_e + \hat{z} \beta^2 \Psi_e$$ (18.1.13) where we have used the BOTC formula to simplify the above. Taking the z component of the above, we get $$E_z \sim \frac{\partial^2}{\partial z^2} \Psi_e + \beta^2 \Psi_e \tag{18.1.14}$$ Assuming that we have a propagating mode inside the waveguide so that $$\Psi_e \sim e^{\mp j\beta_z^z} \tag{18.1.15}$$ then in (18.1.14), $\partial^2/\partial z^2 \rightarrow -\beta_z^2$, and $$E_z \sim (\beta^2 - \beta_z^2)\Psi_e$$ (18.1.16) Therefore, if $$\Psi_e(\mathbf{r}) = 0 \text{ on } C, \tag{18.1.17}$$ then, $$E_z(\mathbf{r}) = 0 \text{ on } C \tag{18.1.18}$$ Equation (18.1.16) is also called the homogeneous Dirichlet boundary condition. One can further show from (18.1.13) that the homogeneous Dirichlet boundary condition also implies that the other components of tangential \mathbf{E} are zero, namely $\hat{n} \times \mathbf{E} = 0$ on the waveguide wall C. Thus, with some manipulation, the boundary value problem related to equation (18.1.12) reduces to a simpler 2D problem, i.e., $$(\nabla_s^2 + \beta_s^2)\Psi_{es}(\mathbf{r}_s) = 0 \tag{18.1.19}$$ with the homogeneous Dirichlet boundary condition that $$\Psi_{es}(\mathbf{r}_s) = 0, \, \mathbf{r}_s \text{ on } C \tag{18.1.20}$$ In the above, we have assumed that $$\Psi_e(\mathbf{r}) = \Psi_{es}(\mathbf{r}_s)e^{\mp j\beta_z^z} \tag{18.1.21}$$ To illustrate the above theory, we can solve some simple waveguides problems. ### 18.2 Rectangular Waveguides Rectangular waveguides are among the simplest waveguides to analyze because closed form solutions exist in cartesian coordinates. One can imagine traveling waves in the xy directions bouncing off the walls of the waveguide causing standing waves to exist inside the waveguide. As shall be shown, it turns out that not all electromagnetic waves can be guided by a hollow waveguide. Only when the wavelength is short enough, or the frequency is high enough that an electromagnetic wave can be guided by a waveguide. When a waveguide mode cannot propagate in a waveguide, that mode is known to be cut-off. The concept of cut-off for hollow waveguide is quite different from that of a dielectric waveguide we have learned previously. ### 18.2.1 TE Modes (H Mode or $H_z \neq 0$ Mode) For this mode, the scalar potential $\Psi_{hs}(\mathbf{r}_s)$ satisfies $$(\nabla_s^2 + \beta_s^2)\Psi_{hs}(\mathbf{r}_s) = 0, \quad \frac{\partial}{\partial n}\Psi_{hs}(\mathbf{r}_s) = 0 \quad \text{on } C$$ (18.2.1) where $\beta_s^2 = \beta^2 - \beta_z^2$. A viable solution using separation of variables⁴ for $\Psi_{hs}(x,y)$ is then $$\Psi_{hs}(x,y) = A\cos(\beta_x x)\cos(\beta_y y) \tag{18.2.2}$$ where $\beta_x^2 + \beta_y^2 = \beta_s^2$. One can see that the above is the representation of standing waves in the xy directions. It is quite clear that $\Psi_{hs}(x,y)$ satisfies equation (18.2.1). Furthermore, cosine functions, rather than sine functions are chosen with the hindsight that the above satisfies the homogenous Neumann boundary condition at x = 0, and y = 0 surfaces. Figure 18.3: The schematic of a rectangular waveguide. By convention, the length of the longer side is usually named a. ⁴For those who are not familiar with this topic, please consult p. 385 of Kong [31]. Hollow Waveguides 177 To further satisfy the boundary condition at x = a, and y = b surfaces, it is necessary that the boundary condition for eq. (18.1.8) is satisfied or that $$\partial_x \Psi_{hs}(x,y)|_{x=a} \sim \sin(\beta_x a)\cos(\beta_y y) = 0, \tag{18.2.3}$$ $$\partial_y \Psi_{hs}(x,y)|_{y=h} \sim \cos(\beta_x x) \sin(\beta_y b) = 0, \tag{18.2.4}$$ The above puts constraints on β_x and β_y , implying that $\beta_x a = m\pi$, $\beta_y b = n\pi$ where m and n are integers. Hence (18.2.2) becomes $$\Psi_{hs}(x,y) = A\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right) \tag{18.2.5}$$ where $$\beta_x^2 + \beta_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 = \beta_s^2 = \beta^2 - \beta_z^2$$ (18.2.6) Clearly, (18.2.5) satisfies the requisite homogeneous Neumann boundary condition at the entire waveguide wall. At this point, it is prudent to stop and ponder on what we have done. Equation (18.2.1) is homomorphic to a matrix eigenvalue problem $$\overline{\mathbf{A}} \cdot \mathbf{x}_i = \lambda_i \mathbf{x}_i \tag{18.2.7}$$ where \mathbf{x}_i is the eigenvector and λ_i is the eigenvalue. Therefore, β_s^2 is actually an eigenvalue, and $\Psi_{hs}(\mathbf{r}_s)$ is an eigenfunction (or an eigenmode), which is analogous to an eigenvector. Here, the eigenvalue β_s^2 is indexed by m, n, so is the eigenfunction in (18.2.5). The corresponding eigenmode is also called the TE_{mn} mode. The above condition on β_s^2 is also known as the guidance condition for the modes in the waveguide. Furthermore, from (18.2.6), $$\beta_z = \sqrt{\beta^2 - \beta_s^2} = \sqrt{\beta^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$ (18.2.8) And from (18.2.8), when the frequency is low enough, then $$\beta_s^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 > \beta^2 = \omega^2 \mu \varepsilon \tag{18.2.9}$$ and β_z becomes pure imaginary and the mode cannot propagate or become evanescent in the z direction.⁵ For fixed m and n, the frequency at which the above happens is called the cutoff frequency of the TE_{mn} mode of the waveguide. It is given by $$\omega_{mn,c} = \frac{1}{\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$ (18.2.10) ⁵We have seen this happening in a plasma medium earlier and also in total internal reflection. When $\omega < \omega_{mn,c}$, the TE_{mn} mode is evanescent and cannot propagate inside the waveguide. A corresponding cutoff wavelength is then $$\lambda_{mn,c} = \frac{2}{\left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]^{1/2}}$$ (18.2.11) So when $\lambda > \lambda_{mn,c}$, the mode cannot propagate inside the waveguide. When m=n=0, then $\Psi_h(\mathbf{r})=\Psi_{hs}(x,y)\exp(\mp j\beta_z z)$ is a function independent of x and y. Then $\mathbf{E}(\mathbf{r})=\nabla\times\hat{z}\Psi_h(\mathbf{r})=\nabla_s\times\hat{z}\Psi_h(\mathbf{r})=0$. It turns out the only way for $H_z\neq 0$ is for $\mathbf{H}(\mathbf{r})=\hat{z}H_0$ which is a static field in the waveguide. This is not a very interesting mode, and thus TE_{00} propagating mode is assumed not to exist and not useful. So the TE_{mn} modes cannot have both m=n=0. As such, the TE_{10} mode, when a>b, is the mode with the lowest cutoff frequency or longest cutoff wavelength. For the TE_{10} mode, for the mode to propagate, from (18.2.11), it is needed that $$\lambda < \lambda_{10,c} = 2a \tag{18.2.12}$$ The above has the nice physical meaning that the wavelength has to be smaller than 2a in order for the mode to fit into the waveguide. As a mnemonic, we can think that photons have "sizes", corresponding to its wavelength. Only when its wavelength is small enough can the photons go into (or be guided by) the waveguide. The TE_{10} mode, when a > b, is also the mode with the lowest cutoff frequency or longest cutoff wavelength. It is seen with the above analysis, when the wavelength is short enough, or frequency is high enough, many modes can be guided. Each of these modes has a different group and phase velocity. But for most applications, a single guided mode only is desirable. Hence, the knowledge of the cutoff frequencies of the fundamental mode (the mode with the lowest cutoff frequency) and the next higher mode is important. This allows one to pick a frequency window within which only a single mode can propagate in the waveguide. It is to be noted that when a mode is cutoff, the field is evanescent, and there is no real power flow down the waveguide: Only reactive power is conveyed by such a mode. # Bibliography - [1] J. A. Kong, Theory of electromagnetic waves. New York, Wiley-Interscience, 1975. - [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," *Annalen der Physik*, vol. 17, no. 891, p. 50, 1905. - [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927. - [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963. - [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954. - [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005. - [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University Press, 2017. - [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999. - [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001. - [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800. - [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823. - [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et - 26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825. - [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2. - [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," *Annalen der Physik*, vol. 148, no. 12, pp. 497–508, 1847. - [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," *IRE Transactions on Circuit Theory*, vol. 5, no. 1, pp. 8–30, 1958. - [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998. - [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical transactions of the Royal Society of London*, no. 155, pp. 459–512, 1865. - [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888. - [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," *Isis*, vol. 31, no. 2, pp. 327–379, 1940. - [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept—a translation of the Annalen der Physik paper of 1905," American Journal of Physics, vol. 33, no. 5, pp. 367–374, 1965. - [21] A. Pais, "Einstein and the quantum theory," Reviews of Modern Physics, vol. 51, no. 4, p. 863, 1979. - [22] M. Planck, "On the law of distribution of energy in the normal spectrum," *Annalen der physik*, vol. 4, no. 553, p. 1, 1901. - [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016. - [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005. - [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992. - [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018. - [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008. - [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988. - [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995. - [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773. - [31] J. A. Kong, Electromagnetic Wave Theory. EMW Publishing, 2008. - [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005. - [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3. - [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995. - [35] V. J. Katz, "The history of Stokes' theorem," *Mathematics Magazine*, vol. 52, no. 3, pp. 146–156, 1979. - [36] W. K. Panofsky and M. Phillips, Classical electricity and magnetism. Courier Corporation, 2005. - [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUF Oxford, 2014. - [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990. - [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013. - [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986. - [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012. - [42] J. D. Jackson, Classical electrodynamics. John Wiley & Sons, 1999. - [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008. - [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, 1970. - [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009. - [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014. - [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961. - [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968. - [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974. - [50] S. L. Chuang, Physics of photonic devices. John Wiley & Sons, 2012, vol. 80. - [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019. - [52] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013. - [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003. - [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984. - [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996. - [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986. - [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5. - [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011. - [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999. - [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06. - [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995. - [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983. - [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008. - [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016. - [65] B. G. Streetman and S. Banerjee, Solid state electronic devices. Prentice hall Englewood Cliffs, NJ, 1995. - [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06. - [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009. - [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014. - [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3. - [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982. - [71] J. Kraus, Electromagnetics. McGraw-Hill, 1984. - [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization. - [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009. - [74] H. Haus, *Electromagnetic Noise and Quantum Optical Measurements*, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000. - [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016. - [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960. - [77] R. Plonsey and R. E. Collin, *Principles and applications of electromagnetic fields*. McGraw-Hill, 1961. - [78] M. N. Sadiku, Elements of electromagnetics. Oxford University Press, 2014. - [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www.slideshare.net/abhishekwadhwa786/transmission-media-9416228. - [80] P. H. Smith, "Transmission line calculator," Electronics, vol. 12, no. 1, pp. 29–31, 1939. - [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962. - [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf. - [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004. - [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960. - [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018. - [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959. - [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law. - [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969. - [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980. - [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect. - [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158. - [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_Waveguides_p.pdf, 2018. - [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber. - [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/1869IndoEur/index.htm. - [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/Submarine_communications_cable. - [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815. - [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle. - [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39. - [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968. - [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon. - [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg. - [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao. - [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951. - [104] R. Kubo, "The fluctuation-dissipation theorem," Reports on progress in physics, vol. 29, no. 1, p. 255, 1966. - [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985. - [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996. - [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55. - [108] "Handbook of mathematical functions: with formulas, graphs, and mathematical tables."