Lecture 18

Hollow Waveguides

Hollow waveguides are useful for high-power microwaves. Air has a higher breakdown voltage
compared to most materials, and hence, could be a good medium for propagating high power
microwave. Also, hollow waveguides are sufficiently shielded from the rest of the world so
that interference from other sources is minimized. Furthermore, for radio astronomy, they
can provide a low-noise system immune to interference. Air generally has less loss than
materials, and loss is often the source of thermal noise. A low loss waveguide is also a low
noise waveguide.'

Many waveguide problems can be solved in closed form. An example is the coaxial waveg-
uide previously discussed. But there are many other waveguide problems that have closed
form solutions. Closed form solutions to Laplace and Helmholtz equations are obtained by the
separation of variables method. The separation of variables method works only for separable
coordinate systems. (There are 11 separable coordinates for Helmholtz equations, but 13 for
Laplace equation.) Some examples of separable coordinate systems are cartesian, cylindrical,
and spherical coordinates. But these three coordinates are about all we need to know for
solving many engineering problems. More complicated cases are now handled with numerical
methods using computers.

When a waveguide has a center conductor or two conductors like a coaxial cable, it can
support a TEM wave where both the electric field and the magnetic field are orthogonal to
the direction of propagation. The uniform plane wave is an example of a TEM wave, for
instance.

However, when the waveguide is hollow or is filled completely with a homogeneous medium,
without a center conductor, it cannot support a TEM mode as we shall prove next. Much of
the materials of this lecture can be found in [31,75,84].

IThere is a fluctuation dissipation theorem [103,104] that says that when a system loses energy to the
environment, it also receives the same amount of energy from the environment in order to conserve energy.
Hence, a lossy system loses energy to its environment, but it receives energy back from the environment in
terms of thermal noise.
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18.1 Hollow Waveguides
18.1.1 Absence of TEM Mode in a Hollow Waveguide
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Figure 18.1: Absence of TEM mode in a hollow waveguide enclosed by a PEC wall. The
magnetic field lines form a closed loop due to the absence of magnetic charges.

We would like to prove by contradiction (reductio ad absurdum) that a hollow waveguide
as shown in Figure 18.1 (i.e. without a center conductor) cannot support a TEM mode as
follows. If we assume that TEM mode does exist, then the magnetic field has to end on itself
due to the absence of magnetic charges. It is clear that fﬁc H, - dl # 0 about any closed
contour following the magnetic field lines. But Ampere’s law states that the above is equal

to
§ll>Hs~d1:jw/D~dS+/J‘dS (18.1.1)
C S S

Hence, this equation cannot be satisfied unless there are E, # 0 component, or that J, # 0
inside the waveguide. The right-hand side of the above cannot be entirely zero, or this implies
that E, # 0 unless a center conductor carrying a current J is there. This implies that a TEM
mode in a hollow waveguide without a center conductor cannot exist.

Therefore, in a hollow waveguide filled with homogeneous medium, only TE, or TM,
modes can exist like the case of a layered medium. For a TE, wave (or TE wave), E, = 0,
H, # 0 while for a TM, wave (or TM wave), H, = 0, E, # 0. These classes of problems
can be decomposed into two scalar problems like the layerd medium case, by using the pilot
potential method. However, when the hollow waveguide is filled with a center conductor, the
TEM mode can exist in addition to TE and TM modes.

We will also study some closed form solutions to hollow waveguides, such as the rectan-
gular waveguides. These closed form solutions offer us physical insight into the propagation
of waves in a hollow waveguide. Another waveguide where closed form solutions can be ob-
tained is the circular hollow waveguide. The solutions need to be sought in terms of Bessel
functions. Another waveguide with closed form solutions is the elliptical waveguide. However,
the solutions are too complicated to be considered.
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18.1.2 TE Case (E, =0, H, #0)

In this case, the field inside the waveguide is TE to z or TE,. To ensure a TE field, we can
write the E field as

E(r) = V x 20, (1) (18.1.2)

Equation (18.1.2) will guarantee that E, = 0 due to its construction. Here, ¥, (r) is a scalar
potential and 2 is called the pilot vector.?

The waveguide is assumed source free and filled with a lossless, homogeneous material.
Eq. (18.1.2) also satisfies the source-free condition since V-E = 0. And hence, from Maxwell’s
equations, it can be shown that the electric field E(r) satisfies the following Helmholtz wave
equation, or partial differential equation that

(V24 BHE(r) =0 (18.1.3)
where 3% = w?ue. Substituting (18.1.2) into (18.1.3), we get
(V2 + BV x 20(r) =0 (18.1.4)

In the above, we assume that V2V x 2¥ = V x 2(V2W¥), or that these operators commute.?
Then it follows that

V x (V2 + 5y (r) =0 (18.1.5)

Thus, if Uy, (r) satisfies the following Helmholtz wave equation of partial differential equa-
tion

(V24 5%)Uu(r) =0 (18.1.6)

then (18.1.5) is satisfied, and so is (18.1.3). Hence, the E field constructed with (18.1.2)
satisfies Maxwell’s equations, if U (r) satisfies (18.1.6).

21t “pilots” the field so that it is transverse to z.
3This is a mathematical parlance, and a commutator is defined to be [A, B] = AB — BA for two operators
A and B. If these two operators commute, then [A, B] = 0.
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Figure 18.2: A hollow metallic waveguide with a center conductor (left), and without a center
conductor (right).

Next, we look at the boundary condition for ¥y, (r) which is derivable from the boundary
condition for E. The boundary condition for E is that 7 x E = 0 on C, the PEC wall of the
waveguide. But from (18.1.2), using the back-of-the-cab (BOTC) formula,

AxBE=n0x(Vx20,) =—i VT, =0 (18.1.7)

In applying the BOTC formula, one has to be mindful that V operates on a function to its
right, and the function ¥} should be placed to the right of the V operator.

In the above n -V = n - Vg where Vg = i?% + 1]8% since n has no z component. The
boundary condition (18.1.7) then becomes

- Vs\:[/h = 8n\I!h =0on C (1818)

which is also known as the homogeneous Neumann boundary condition.
Furthermore, in a waveguide, just as in a transmission line case, we are looking for traveling
solutions of the form exp(Fjf3,z) for (18.1.6), or that

Uy (r) = Wy (r)e TP (18.1.9)

where ry = Zx+gy, or in short, U, (rs) = Yps(z,y). Thus, 8, ¥}, = 0 implies that 9, ¥y, = 0.
With this assumption, 88—; — —8,%, and (18.1.6) becomes even simpler, namely,

(V24 8% = B.2)Ups(rs) = (V2 + BH U (rs) =0, 9, Tps(rs) =0, on C  (18.1.10)

where 32 = 32 — 2. The above is a boundary value problem for a 2D waveguide problem.
The above 2D wave equation is also called the reduced wave equation.
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18.1.3 TM Case (E, #0, H, =0)
Repeating similar treatment for TM waves, the TM magnetic field is then
H="V x 30,(r) (18.1.11)
where
(V24 B3, (r) =0 (18.1.12)

We need to derive the boundary condition for ¥.(r) when we know that 7 x E = 0 on the
waveguide wall. To this end, we find the corresponding E field by taking the curl of the
magnetic field in (18.1.11), and thus the E field is proportional to

0
E~VxVx2U,(r)=VV-(30,) - V23U, = Vo Vet 2620, (18.1.13)
z
where we have used the BOTC formula to simplify the above. Taking the z component of
the above, we get
2

E.r oW+ B2, (18.1.14)
Assuming that we have a propagating mode inside the waveguide so that
T, ~ T8 (18.1.15)
then in (18.1.14), 92/92% — —f2, and
E. ~ (8 — 32U, (18.1.16)
Therefore, if
U.(r)=0o0nC, (18.1.17)
then,
E.(r)=0o0nC (18.1.18)

Equation (18.1.16) is also called the homogeneous Dirichlet boundary condition. One can
further show from (18.1.13) that the homogeneous Dirichlet boundary condition also implies
that the other components of tangential E are zero, namely 7 x E = 0 on the waveguide wall
C.

Thus, with some manipulation, the boundary value problem related to equation (18.1.12)
reduces to a simpler 2D problem, i.e.,

(V.2 + B2 W, (ry) = 0 (18.1.19)
with the homogeneous Dirichlet boundary condition that

U.s(rs) =0,rs on C (18.1.20)
In the above, we have assumed that

U, (r) = Uoy(ry)eTiPe" (18.1.21)

To illustrate the above theory, we can solve some simple waveguides problems.
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18.2 Rectangular Waveguides

Rectangular waveguides are among the simplest waveguides to analyze because closed form
solutions exist in cartesian coordinates. One can imagine traveling waves in the zy directions
bouncing off the walls of the waveguide causing standing waves to exist inside the waveguide.

As shall be shown, it turns out that not all electromagnetic waves can be guided by
a hollow waveguide. Only when the wavelength is short enough, or the frequency is high
enough that an electromagnetic wave can be guided by a waveguide. When a waveguide
mode cannot propagate in a waveguide, that mode is known to be cut-off. The concept of
cut-off for hollow waveguide is quite different from that of a dielectric waveguide we have
learned previously.

18.2.1 TE Modes (H Mode or H, # 0 Mode)

For this mode, the scalar potential W, (r,) satisfies

(V2 + B2 (rs) = 0, %\Phs(rs) =0 onC (18.2.1)

where 8,2 = 82 — 3,2, A viable solution using separation of variables? for Uys(z,y) is then
Ups(z,y) = Acos(Bzx) cos(Byy) (18.2.2)

where ,% + Bz = /2. One can see that the above is the representation of standing waves
in the xy directions. It is quite clear that W, (x,y) satisfies equation (18.2.1). Furthermore,
cosine functions, rather than sine functions are chosen with the hindsight that the above
satisfies the homogenous Neumann boundary condition at £ = 0, and y = 0 surfaces.

“y

Figure 18.3: The schematic of a rectangular waveguide. By convention, the length of the
longer side is usually named a.

4For those who are not familiar with this topic, please consult p. 385 of Kong [31].
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To further satisfy the boundary condition at = a, and y = b surfaces, it is necessary
that the boundary condition for eq. (18.1.8) is satisfied or that

02 W (,y)],—, ~ sin(Bra) cos(Byy) = 0, (18.2.3)

Oy Vs (2, y)|,—p, ~ cos(Bzx) sin(Byd) = 0, (18.2.4)

The above puts constraints on 3, and 3, implying that 8,a = mn, 8yb = nm where m and
n are integers. Hence (18.2.2) becomes

Ups(x,y) = Acos (%x) cos (%y) (18.2.5)
where
= (T (5Y e 1526)

Clearly, (18.2.5) satisfies the requisite homogeneous Neumann boundary condition at the
entire waveguide wall.

At this point, it is prudent to stop and ponder on what we have done. Equation (18.2.1)
is homomorphic to a matrix eigenvalue problem

K'Xi = Aixi (1827)

where x; is the eigenvector and ); is the eigenvalue. Therefore, 32 is actually an eigenvalue,
and Uy, (rs) is an eigenfunction (or an eigenmode), which is analogous to an eigenvector. Here,
the eigenvalue 52 is indexed by m,n, so is the eigenfunction in (18.2.5). The corresponding
eigenmode is also called the TE,,, mode.

The above condition on 32 is also known as the guidance condition for the modes in the
waveguide. Furthermore, from (18.2.6),

g g (M (T2
B. = /B — B \/ - (=) - (%) (18.2.8)
And from (18.2.8), when the frequency is low enough, then

B2 = (%)2 + (%)2 > B2 = wpe (18.2.9)

and (3, becomes pure imaginary and the mode cannot propagate or become evanescent in the
z direction.® For fixed m and n, the frequency at which the above happens is called the cutoff
frequency of the TE,,, mode of the waveguide. It is given by

e = (22 (55 (182,10

5We have seen this happening in a plasma medium earlier and also in total internal reflection.
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When w < Wpn, ¢, the TE,,,, mode is evanescent and cannot propagate inside the waveguide.
A corresponding cutoff wavelength is then

2
()" + (3)/2

(18.2.11)

/\mn,c =

So when A > A, ¢, the mode cannot propagate inside the waveguide.

When m = n =0, then Uy, (r) = U,4(z, y) exp(FjB.2) is a function independent of x and
y. Then E(r) =V x 2U,(r) = Vs x 2P (r) = 0. It turns out the only way for H, # 0 is for
H(r) = ZH, which is a static field in the waveguide. This is not a very interesting mode, and
thus TEqy propagating mode is assumed not to exist and not useful. So the TE,,, modes
cannot have both m = n = 0. As such, the TE;g mode, when a > b, is the mode with the
lowest cutoff frequency or longest cutoff wavelength.

For the TE1¢ mode, for the mode to propagate, from (18.2.11), it is needed that

A< )\107C = 2a (18.2.12)

The above has the nice physical meaning that the wavelength has to be smaller than 2a in
order for the mode to fit into the waveguide. As a mnemonic, we can think that photons have
“sizes” , corresponding to its wavelength. Only when its wavelength is small enough can the
photons go into (or be guided by) the waveguide. The TE;q mode, when a > b, is also the
mode with the lowest cutoff frequency or longest cutoff wavelength.

It is seen with the above analysis, when the wavelength is short enough, or frequency is
high enough, many modes can be guided. Each of these modes has a different group and
phase velocity. But for most applications, a single guided mode only is desirable. Hence,
the knowledge of the cutoff frequencies of the fundamental mode (the mode with the lowest
cutoff frequency) and the next higher mode is important. This allows one to pick a frequency
window within which only a single mode can propagate in the waveguide.

It is to be noted that when a mode is cutoff, the field is evanescent, and there is no real
power flow down the waveguide: Only reactive power is conveyed by such a mode.
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